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ABSTRACT: The first Suzuki—Miyaura cross-coupling reactions of the
synthetically versatile aryl O-carbamate and O-sulfamate groups are de-
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scribed. The transformations utilize the inexpensive, bench-stable catalyst

NiCl,(PCys3), to furnish biaryls in good to excellent yields. A broad scope

R = -C(O)NEt;, or -SO;NMe, > 65 examples

for this methodology has been demonstrated. Substrates with electron-

may be employed as coupling partners. A computational study providing

donating and electron-withdrawing groups are tolerated, in addition to F
those that possess ortho substituents. Furthermore, heteroaryl substrates Pn
the full catalytic cycles for these cross-coupling reactions is described. The flurbiprofen

oxidative addition with carbamates or sulfamates occurs via a five-centered

transition state, resulting in the exclusive cleavage of the aryl C—O bond.

Water is found to stabilize the Ni-carbamate catalyst resting state, which thus provides rationalization of the relative decreased rate of
coupling of carbamates. Several synthetic applications are presented to showcase the utility of the methodology in the synthesis of
polysubstituted aromatic compounds of natural product and bioactive molecule interest.

B INTRODUCTION

Transition metal-catalyzed cross-coupling reactions provide a
powerful means to assemble carbon—carbon (C—C) and carbon—
heteroatom (C—X) bonds." Although hahdes are most commonly
employed as the electrophilic partner,"* phenolic derivatives
(Figure 1), or “pseudohalides”, offer a valuable alternative given
that phenols are typically inexpensive and readily available
materials.”> Cross-couplings of aryl sulfonates have been most
widely studied, and a range of C—C and C—X bond forming
reactions are now established."** Recent studies have focused on
the development of Iess common phenol based electro%hlles,
such as ethers,” esters,® carbamates,” and sulfamates”™ ™ since
they are commonly more robust, typically unreactive toward Pd
catalysis, and show synthetic advantage for the regioselective
construction of aromatics by C—H activation and directed ortho
metalation (DoM) chemistry."'~"*

Inspired by the reasons outlined above, our laboratories have
pursued the development of cross-coupling reactions involving
phenol-derived carbamates and sulfamates (Scheme 1). Previous
studies have demonstrated the utility of these reaction partners in
nickel-catalyzed Kumada couplings.%l’e’l However, the corre-
sponding Suzuki—Miyaura couplings of these substrates have
remained elusive, despite the numerous benefits of organoboro-
nate coupling methodologies. Such advantages include the low
toxicity, wide availability, and pronounced stability of organobor-
onates, in addition to their broad functional group tolerance."" In
this article, we report (a) the development of the Ni-catalyzed
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Figure 1. Phenol-based cross-coupling partners.

Suzuki—Miyaura cross-coupling reactions of aryl O-carbamates
and O-sulfamates, (b) the broad scope of these transformations,
which includes the cross-coupling of heterocyclic substrates, (c)
computational studies that elucidate the complete catalytic cycle of
these couplings, and (d) a variety of synthetic applications,
including DoM:-linked tactics and a concise synthesis of the anti-
inflammatory drug flurbiprofen.'®
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Table 1. Cross-Coupling of Aryl Carbamates with
Arylboronic Acids”

NiCl,(PCy3),
Ar—OR  + (HO),B X —_— = Ar X
K3PO,
1a, X = OMe toluene, heat
2a,X=H
entry Ar-OR (HO),B-Ar product yield®

51%

™ .
DS SIS & Jour
W

OO
Ry e S Y I

“ Conditions: NiCl,(PCys3), (10 mol %), ArB(OH), (4 equiv), K3PO,
(7.2 equiv), toluene (0.3 M), 130 °C for 24 h. ¥ Conditions: NiCl,-
(PCy3), (5 mol %), ArB(OH), (2.5 equiv), K3PO, (4.5 equiv), toluene
(0.3 M), 110 °C, 24 h. “Yields of isolated products.

52%

B RESULTS AND DISCUSSION

Suzuki—Miyaura Cross-Coupling Reactions of Aryl O-Car-
bamates. A key challenge in achieving the Suzuki—Miyaura cross-
coupling of aryl carbamates lies in activating the fairly inert aryl
carbon—oxygen bond of these substrates. A similar obstacle had
been overcome in our previously reported Suzuki—Miyaura cou-
pling of aryl pivalates.** Encouraged by our prior success, we explored
NiCL(PCy;3),-promoted conditions to effect the desired Suzuki—
Miyaura coupling of aryl carbamates (Table 1). Of note, NiCl,-
(PCys), is readily available, is considerably stable to air and water,
and can be used on the benchtop rather than in a glovebox."” "
Initial studies were directed toward the coupling of fused-aromatic
systems, which are typically superior substrates in Ni-catalyzed
couplings of phenolic derivatives.” ® Unfortunately, applying our
optimal conditions for pivalate coupling (ie., NiCL(PCy3), (S mol
%) and K5PO, (4.5 equiv) in toluene at 80 °C) to a l-naphthyl

Table 2. Optimization Studies for Naphthyl 2-O-Carbamate
Coupling

Mea
COINEL, 3a = p-tol-B(OH), Nticélz{Pcyglg
+ andior ——
PCy;HBF,
3b=(ptol)yB0,  (Xmol%)

entry®  solvent temp PCy;HEF, K4PO, ArB(OR), yield®
1 o-xylene 150 °C 10 mol% 5 equiv 3b (2.5 equiv) 61%
2 oxylene  150°C  10mot%  Sequv :9;;:’: wy %
3 oxylene  150°C  10mol%  5equiv mﬁ:";i: iy 100% (84%)
P toluene 120°C - 7.2 equiv l‘i:lo‘?g:?:quhr) 62%

“Yield by GC/MS analysis (yield of isolated product). " All reactions
were run for 20 h with the exception of entry 4, which was run for Sh. € 10
mol % NiCL(PCys3),.

carbamate substrate led only to trace amounts of cross-coupled
product. By raising the temperature to 110 °C, however, the desired
biaryl was obtained in 51% yield (entry 1). Further optimization
ultimately established more forcing conditions that delivered the
targeted product in 86% yield (entry 2).

Additional carbamate substrates were examined under our Ni-
catalyzed reaction conditions (Table 1).*° 2-Naphthyl carba-
mates gave products in lower yields (entries 3 and 4). The
reaction proved tolerant of an electron-withdrawing group
(EWG; —CO,Me, entry 4) and an electron-donating group
(EDG; —OMe, entry 5) on the naphthyl ring. The correspond-
ing reactions of phenyl carbamates was more challenging. None-
theless, carbamates derived from phenol and p-methoxyphenol
were converted to the corresponding cross-coupled products in
52% and 41% yield, respectively (entries 6 and 7).

Further studies were undertaken to uncover higher yielding and
more generally useful reaction conditions. The N,N-diethyl carba-
mate of 2-naphthol was subjected to NiCl,(PCy;), with variations
in temperature, solvent, ligand additive, and organoboron species
(Table 2). When employing o-xylenes at 150 °C, cross-coupling
with boroxine 3b proceeded sluggishly but nevertheless furnished
the desired biaryl in 61% yield (entry 1). Mixtures of boronic acids
and boroxines were also examined. Using a 1:1 mixture of 3a:3b,
the desired biaryl was obtained in only 26% yield (entry 2). These
results, coupled with the observation that 3a liberates excessive
water in organic solvents, led us to hypothesize that, although
some water is necessary to generate the catalytically active
boronate species, excessive water can be detrimental to the
carbamate cross-coupling reaction.”" Furthermore, Shi had previously
reported the critical role of water in the Suzuki—Miyaura coupling of
aryl pivalate esters.® By using a 1:10 ratio of 3a:3b,>> and thereby
minimizing the water content, a quantitative yield of cross-coupled
product was obtained (entry 3). Conducting the reaction at 120 °C,
with toluene as solvent and 10 mol % Ni catalyst, gave alower yield of
the biaryl adduct (entry 4).

Having found optimal and reproducible conditions, we turned
our attention to defining the scope and functional group tolerance of
the carbamate cross-coupling reaction (Table 3).*° Substrates
derived from 2-naphthol, 1-naphthol, and phenol underwent
smooth coupling (entries 1—3). Furthermore, although a substrate
bearing the electron-withdrawing fluoro substituent was tolerated
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Table 3. Cross-Coupling of Aryl Carbamates under
Improved Conditions”

Ar—OC(O)NEt, + (Roma—@—x M» Ar—@—x
PCy;HBF,, K;PO,
1, X = OMe o-xylene, 150 °C
2,X=H 5-20 h
3, X =Me
entry Ar-OC(OJNE, (RO),B-Ar yield®
OC(O)NE,
1 100% (84%)
2 Q 2 100% (82%)
Q OC(O)NE,
3 @—octommz 1 .—.— 64% (58%)
a Q_m”"a’ 1 Q_O_ 80% (69%)
F
R S S I
6 i@—oqoma, 2 ‘,_. 23% (31%)

? Conditions: NiCl,(PCy3), (S mol %), PCysHBF, (10 mol %), ArB-
(OR), (2.5 equlv) ratio of Ar;B;05:ArB(OH), = 10:1 (4 equiv),
K5PO, (S equlv) Yield by GC/MS analysis (yield of isolated product).

Table 4. Cross-Coupling of Ortho-Substituted Aryl
O-Carbamates”

NiCly(PCys3),
Ar—OC(O)NEt, + (R0)2B—© Ar—@
PCy;HBF,, K;PO,
2 o-xylene, 150 °C
520h
entry Ar-OC{O)NEt, yield®
; Q—OC{OINElz “ 80% (70%)
Bn
OC(O)NEL,
2 99% (93%)
Ph
3 rom]"a’ H 69% (50%)
Ph
OMe

? Conditions: N1C12(PCy3)2 (5 mol %), PCy;HBF, (10 mol %), 2 (2.5
equiv), ratio of Ph3B305:PhB(OH), = 10:1 (4 equiv), K3PO, (S equiv).
"Yield by GC/MS analysis (yield of isolated product).

(entry 4), coupling in the presence of a cyano derivative was less
fruitful (entry S). The latter result can be explained by competitive

Table 5. Cross-Coupling of Heterocyclic Aryl O-Carbamates
and Scope of Aryl Boronates”
-3,

e NiCly(PCy.
HetAr—OC(O)NEY, +  (RO)B—(\ 2 — "}’o
/ PCy3HBF,, K;PO,

o-xylene, 150 °C

1, X = p-OMe; 2, X = H: el
3, X = p-Me; 4, X = p-CFs;
5, X = m-OMe
entry HetAr-OC{O)NEL; (RO);B-Ar product yleld®
1 \ ) —OC(OMEL 1 Q—O—oue {84%)
N

2 WLl 2 W 100% (85%)

N N
3 \ /)—OC(ONEY, 3 W Me (87%)

N N
4 \ /" OC(OINEL, 4 WCFa (70%)
5 ‘,‘_ )—ociomer, 5 }‘_ ) (65%)

L]

100% (51%)

OMe
=N =N
g N\ / 'OC{O)NEt, O Q
O OC(O)NEty Q
HN Q 2 HN Q 45% (36%)
? Conditions: NiCl,(PCys), (S mol %), PCy;HBE, (10 mol %), ArB-

(OR), (2.5 equw), ratio of Ar;B;03:ArB(OH), = 10:1 (4 equiv),
K3PO, (S equlv) Yield by GC/MS analysis (yield of isolated product).

cross-coupling at the cyano group, a transformation reported
recently by Shi.** Finally, an electron-rich substrate gave only low
yields of product (entry 6).

Several ortho-substituted aryl carbamates were tested in the
Suzuki—Miyaura coupling (Table 4). Substrates of this type can
be readily synthesized by DoM"? or transition metal-catalyzed C—H
functionalization."*~® Substrates with o-benzyl, -alkenyl, and -phenyl
groups were all tolerated (entries 1—3). Coupling of the o-methoxy
substrate proceeded in modest yield (entry 4), whereas coupling of
a 2,4-dimethylated substrate was unsuccessful (entry S). In view of
the coupling of other ortho-substituted systems to afford good to
excellent yields of products (entries 1—3), rationalization of these
results based on steric effects is premature.

As shown in Table S, the carbamate cross-coupling methodology
is also applicable to heterocyclic substrates. Thus, the 3-pyridyl
carbamate was efficiently cross-coupled with a variety of organobor-
on species (entries 1—5). In addition, a quinoline-derived substrate
was tolerated (entry 6), and a carbazole-containing substrate under-
went conversion to the desired biaryl under our optimal reaction
conditions albeit in modest yield (entry 7).

Suzuki—Miyaura Cross-Coupling Reactions of Aryl Sulfa-
mates. Concurrent with the above studies on aryl carbamates, aryl
sulfamates were targeted as substrates for the Ni-catalyzed Suzuki—
Miyaura cross-coupling reactions. Although early efforts to effect this
transformation with dppp as ligand gave initial encouragement,'®
employing the tricyclohexylphosphine ligand led to improved results,
ultimately rendering aryl sulfamates superior Suzuki—Miyaura
coupling partners to the corresponding carbamates (Table 6).°
Naphthyl substrates were smoothly converted to biaryl products,
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Table 6. Cross-Coupling of Aryl Sulfamates”

NiCl,(PCyj3),

Ar—OSO,NMe, + (HO)gB—Q—X T e Ar—@—x
K4PO,

1a, X = OMe toluene, 110 °C
2a,X=H
entry Ar-0S0;NMe, (HO),B-Ar product yield®

. 5 .
oo

AT oy J

T "
MeO Q 0SONMe,

4 @—oso,uue, 1a
5 Me—@—OSO,NMe; 1a

6 “b—osogume, 1a oue o1%

§ ¢ -

L]

10 Qo@o,um, 2a

“ Conditions: NiCL,(PCy3), (S mol %), ArB(OH), (2.5 equiv), Ks3PO,
(4.5 equiv), toluene (0.3 M), 110 °C for 24 h.* Yields of isolated products.

even in the presence of an EWG or EDG (entries 1—3). Most
strikingly, the reaction proceeded comparably well when operating on
aryl derivatives (entries 4—9). Methyl and the electron-withdrawing
CF; substituents are tolerated (entries S—7). Substrates bearing
electron-rich methoxy or amino substituents also afforded very good
yields of coupled products (entries 8 and 9). Moreover, a vinyl
sulfamate participated in the Suzuki—Miyaura cross-coupling reac-
tion (entry 10).

In view of the availability of many ortho-substituted aryl sulfamates
by DoM chemistry, such derivatives were also evaluated in the
Suzuki—Miyaura cross-coupling reaction (Table 7).>**® The trans-
formation was found to be tolerant of an o-cresol-derived substrate, in
addition to the sterically burdened sulfamate prepared from 2,6-
dimethylphenol (entries 1 and 2). Furthermore, substrates bearing
o-trimethylsilyl, -phenyl, and -methoxy substituents underwent cross-
coupling to give the corresponding products in excellent yields (entries
3—5). Interestingly, a substrate possessing a bulky o-tert-butylketone
substitutent could also be utilized in this methodology (entry 6).

Although the DoM chemistry of aryl sulfamates was initially
reported using N,N-diethyl substrates,'™ the corresponding N,N-
dimethyl aryl sulfamates were found to undergo metalation under
the identical reported reaction conditions. Scheme 2 highlights
syntheses of substrates 8 —11 beginning from phenyl sulfamate 6,
which, in turn, is easily prepared from phenol and commercially

Table 7. Cross-Coupling of Ortho-Substituted Aryl
Sulfamates”

Ar—OSO,NMe, + (H°)2B—®—x NiCIy(PCys), Ar—@—x
K;PO,
1a, X = OMe toluene
2a,X=H
entry Ar-0S0;NMe, (HO);B-Ar product yield®
Me Me
1 O—oso,nu., 1a ou. 92%
Me Me
We Me
™S ™S
Ph Ph

OMe OMe

C(O)Bu C(0)Bu

e Choomn = OO

# Conditions: NiCl,(PCys), (S mol %), ArB(OH), (2.5 equiv), K3PO,
(4.5 equiv), toluene (0.3 M), 110 °C for 24 h. "Yields of isolated
products. ©Conditions: NiCl,(PCys), (10 mol %), ArB(OH), (4
equiv), K3PO, (7.2 equiv), toluene (0.3 M), 130 °C for 24 h.

2%

Scheme 2

H i. s-BuLi, TMEDA °\>§L Phi ph
O THF, -93 °C B-0 Pd(PPhg), @
0S0,NMe, ——————3» —_— 0S0,NMe,
ii. B(OMe)g; @_ NayCOyaq)
0°C

pinacol OSO,NMe;  pyE, of
(93% yield) 8

6 (86% yield) 7

i. s-BuLi, TMEDA
THF,-93 °C
ii. TMSCI

(86% yield)

i. s-BuLi, TMEDA
THF, 93 °C

ii. Pivel

(59% yield)

1. NaGH, H,0,, THF, 0 °C
2. K3PO,, Mel, DME, 50 °C

{87% yield, 2 steps)

TMS C(0)tBu OMe
9 10 11

available dimethylsulfamoyl chloride”” in quantitative yield. Com-
pounds 9 and 10 were obtained by lithiation of phenyl sulfamate 6,
followed by quenching with TMSCI and PivCl, respectively. Simi-
larly, the boronate 7 was derived by quenching the intermediate
lithio species with B(OMe)s, followed by treatment with pinacol.'®*
Boronate 7 served as the common precursor to substituted sulfa-
mates 8 and 11. Whereas methoxysulfamate 11 was prepared by a
straightforward oxidation*®/methylation sequence, o-phenyl sulfa-
mate 8 was accessed by a Pd-catalyzed Suzuki—Miyaura cross-
coupling. It is notable that the sulfamate remains undisturbed under
the Pd-mediated reaction conditions.

The scope of the sulfamate cross-coupling reaction was also
found to be broad with respect to the boronic acid component
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Table 8. Scope of Arylboronic Acid in the Suzuki—Miyaura
Cross-Coupling of Aryl O-Sulfamates”

Q — NiCI(PCys), O
+ HOB—\ ) —— —
Q_)-osomme, R Ko =T

entry (HO);B-Ar product yleld®

1 :uom—@—

(HO),B

Q
mo,,s_Q O .
4 tHOhB_O_\um Q Q 80%

5 {HO},B—@—OM&
& (uo),a—O—cF,
7 (Ho),a—@—r

T ' od -

? Conditions: NiCl,(PCys3), (S mol %), ArB(OH), (2.5 equiv), KsPO,
(4.5 equiv), toluene (0.3 M), 110 °C for 24 h. "Yields of isolated
products. © Conditions: NiCl,(PCys), (10 mol %), ArB(OH), (4
equiv), K3PO, (7.2 equiv), toluene (0.3 M), 130 °C for 24 h. 4 Condi-
tions: NiCl,(PCys), (5 mol %), ArB(OH), (2.5 equiv), KzPO, (4.5
equiv), toluene (0.3 M), 120 °C for 24 h.

(Table 8). A methyl substituent was tolerated at the para, meta,
and ortho positions (entries 1—3), as was a 4-methoxymethyl
group (entry 4). Cross-coupling of a boronic acid bearing the
electron-donating methoxy group proceeded in 95% yield (entry
S). Finally, electron-withdrawing trifluoromethyl, fluoro, and
acetyl substituents were compatible with the sulfamate coupling
methodology (entries 6—8).

Suzuki—Miyaura Cross-Coupling Reactions of Heterocyclic
O-Sulfamates. Given the importance of heterocycles in medicinal
agents, we probed the use of heterocyclic partners in the sulfamate
Suzuki—Miyaura cross-coupling process.”” As shown in Table 9, a
variety of heterocyclic aryl sulfamates were suitable for this meth-
odology, although more forcing reaction conditions were often
required to achieve synthetically useful yields. Coupling of a
dihydrobenzofuran-derived substrate afforded the desired biaryl in
88% yield (entry 1). Similar success was observed in the coupling
of nitrogen-containing heteroaryl sulfamates (entries 2—6). In

Table 9. Cross-Coupling of Heterocyclic Aryl O-Sulfamates
with Phenylboronic Acid”

NiCl,(PC

HetAr—OSO,NMe, + (HOhB—@ &» HetAr—@
KsPO,
2a toluene

entry HetAr-OSO,NMe, product yield®

1° 88%

0SO,NMe,

<
98
g

0SO,NMe,

oWl YD

5
4/3'
i

3¢

N

S2a ol
N

T e v @

7 7

6° 74%

:;

0S0,NMe,

4 0SO,NMe,

X
| 1

0SO,NMe,

? Conditions: NiCL(PCy3), (S mol %), 2a (2.5 equiv), KsPO, (4.5
equiv), toluene (0.3 M), 110 °C, 24 h. ®Yields of isolated products.
‘ Conditions: NiCl,(PCys), (10 mol %), 2a (4 equiv), KsPO, (7.2
equiv), toluene (0.3 M), 130 °C for 24 h.

addition to indole and carbazole (entries 2 and 3), the pyridine
and quinoline heterocycles, each possessing basic amine function-
ality, were also tolerated (entries 4—6).

The scope of the sulfamate cross-coupling reaction with respect
to heteroaryl boronic acids is summarized in Table 10. Benzofuran-
and furan-containing substrates underwent smooth cross-coupling
under our standard reaction conditions (entries 1 and 2). Further-
more, a sulfur-containing heterocyclic boronic acid could be em-
ployed (entry 3). A pyridine 3-boronic acid derivative was also
tolerated in our Suzuki—Miyaura coupling methodology (entry 4).

As an additional important test of the sulfamate coupling
methodology, we attempted a Suzuki—Miyaura reaction wherein
both coupling partners were heterocyclic substrates (Scheme 3).*
We were delighted to find that the desired cross-coupling between
quinoline-derived sulfamate 12 and pyridinylboronic acid 13 pro-
ceeded smoothly to furnish biaryl 14 in 97% vyield. This result
underscores the critical tolerance of the sulfamate cross-coupling
process to basic nitrogen substituents.

Mechanistic Studies. Pd-catalyzed Suzuki—Miyaura cross-cou-
plings have been studied computationally by various groups.’**"
The three key steps in the catalytic cycle, oxidative addition,>
transmetalation,®’ and reductive elimination, have been studied
carefully for reactions involving a variety of substrates. The mechan-
ism of the Ni-catalyzed Suzuki—Miyaura cross-coupling with aryl
acetates has been recently investigated theoretically by Li et al.>* Here
we report the first theoretical study of the catalytic cycles of the Ni-
catalyzed Suzuki—Miyaura cross-coupling with O-carbamates and O-
sulfamates using density functional theory (DFT). The selectivities
between couplings with the Ar—O bond and the O—carbonyl/
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Table 10. Cross-Coupling of Naphthyl Sulfamates with Het-

erocyclic Aryl Boronic Acids”
XHetAr

NiCl,(PC
O +  (HO),B—HetAr ﬂ»
Koo 5%

entry (HO),B-HetAr product yield®

B67%
2 (HDhB—@ 79%
(s ]
3 tHO}zB—@ l :
4 tHOJzB—Q 20%
MeO \ ’

“? Conditions: NiCL,(PCys), (5 mol %), HetArB(OH)2 (2.5 equiv),
K3PO, (4.5 equiv), toluene (0.3 M), 110 °C, 24 h. ®Yields of isolated
products.

1 {Ho;,s /

Scheme 3
—  Meweon =
N OSO;NMe,  (HO):B N\ 7 (1% mots) N \ 4
4 & N  K.PO, (T.2equiv) ¢ N
= MeO toluene, 130 °C — MeO
12 13 {97% yield) 14

sulfonyl bond and the effects of water on the reactivities are also
described.

Figures 2 and 3 depict the catalytic cycles for the Suzuki—Miyaura
cross-coupling of aryl carbamates and sulfamates, respectively, as
determined by DFT calculations. The geometries of important
transition structures are shown in Figure 4 for the couplings of N,
N-dimethyl phenyl carbamate and N,N-dimethyl phenyl sulfamate
with phenylboronic acid. The PCyj; ligand used in the experiments
was also used in the calculations. Geometry optimizations and
frequency calculations were performed using B3LYP*® and a mixed
basis set employing LANL2DZ for metal and 6-31G(d) for other
atoms. Conformational searches of the PCyj ligand were performed.
The initial geometry of PCy; was taken from the crystal structure of
Ni(PCys) (C,H,)». Several rotamers of the PCyj ligands in the Ni
complexes were tested as the initial geometry in the optimizations.
Energies reported are Gibbs free energies in solution, which involve
zero-point vibrational energy corrections, thermal corrections to
Gibbs free energy at 298 K, and solvation free energy corrections
computed by singlet point CPCM®’ calculations on gas-phase
optimized geometries (toluene was used as solvent). The molecular
cavities were built up using the United Atom Topological Model
(UAHF). Vibrational frequencies were calculated for all optimized
structures to confirm the nature of the stationary points. All calcula-
tions were performed using Gaussian 03.*

The oxidative addition of aryl carbamates may occur via several
different pathways: the Ni may be mono- or bis-ligated, and the

oxidative addition may occur at the Ph—O bond or the O—carbonyl
bond of the carbamates. Previous theoretical studies suggested that
the oxidative addition of aryl halides to Pd(0) catalysts involves
formation of an #7” LPd(ArX) pre-reaction complex.’> The 7’
LPd(ArX) complex may be generated through ligand dissociation
from PdL, followed by coordination with aryl halide or through a
concerted or stepwise associative displacement pathway.” Recent
density functional calculations by Li et al. suggested that the
oxidative addition of phenylacetates 1n Ni-catalyzed Suzuki—
Miyaura couphngs also involves an 77> LNi(ArX) pre-reaction
complex.* Upon dissociation of a PCys ligand, the Ni catalyst
coordinates with the substrate to generate an 7” complex 16,
which is slightly less stable than Ni(PCys),.* Li et al. suggested
that the oxidative addition of phenylacetates occurs via a three-
centered transition state, and the weaker PhO—carbonyl bond is
more reactive compared to the Ph—O bond.*® We investigated the
possible pathways in the oxidative additions with phenyl carbamates
(Figures 2 and 4) and found that the preferred pathway involves
oxidative addition at the Ph—O bond via a five-centered transition
state (TS17, Figures 2 and 4) in which Ni is monoligated and
coordinated with the carbonyl oxygen.*** The corresponding
three-centered transition state (TS30) that uses a single oxygen
of the carboxylate to bridge requires 7.4 kcal/mol higher activation
energy. In contrast to previous theoretical studies by Li et al, the
Ph—O bond in carbamates is more reactive in oxidative addition
than the PhO—carbonyl bond, although the former is a stronger
bond in terms of bond dissociation energies.* Oxidative addition at
the O—carbonyl bond can only occur via a three-centered transition
state (TS31) and requires 3.9 kcal/mol higher energy than the
oxidative addition at the Ph—O bond (TS17). Thus, the oxidative
addition occurs exclusively at the Ph—O bond due to a favorable
five-centered transition state. The carbonyl group is acting as a
directing group to activate the Ph—O bond in the oxidative addition.
It is conceivable that such activating effects by adjacent oxygenation
is also present in oxidative additions with carbonates, sulfonates, and
sulfamates, etc.

A stable phenyl Ni(II)-carbamate complex 18 is formed after
the oxidative addition (Figure 2). The carbamate is «,-coordi-
nated with Ni. Subsequent ligand exchange of the carbamate
complex 18 with phenylboronate leads to phenyl Ni(II)-bor-
onate complex 20, which is 5.5 kcal/mol less stable than the Ni-
carbamate complex. The detailed mechanism of thls ligand
exchange step has been suggested to be stepwise. 15244 previous
theoretical studies su§§bested that the ligand exchange does not
have alarge barrier.*""3!8 Thus, we assume the transformation
from 18 to 20 is facile.

The following transmetalation (TS21) is the rate-determining
step of the catalytic cycle, and requires an activation energy of 30.2
keal/mol from the catalyst resting complex 18. The transmetalation
transition state (TS21) is consistent with the four-center transition
state proposed in previous theoretical studies of Pd- and Ni-
catalyzed Suzuki—Miyaura couplings.*"** The two aryl groups are
cis to each other in the transmetalation transition state. The trans
transition state is 3.5 kcal/mol less stable, presumably due to greater
steric repulsions between the ligand and the aryl groups. Subsequent
reductive elimination of the diphenyl Ni(II) complex (23 — TS24)
is facile, requiring only a 2.9 kcal/mol activation energy.

Similarly, the oxidative addition of N,N-dimethyl phenyl
sulfamate occurs via a monoligated five-membered transition
state (TS27).*' Three-center transition states TS32 and TS33
are both much higher in energy (Figure 4). The activation barrier
for oxidative addition of sulfamate 6 is 10.4 kcal/mol with respect
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Figure 2. Gibbs free energy profile of Ni-catalyzed Suzuki—Miyaura cross-coupling reaction of phenyl N,N-dimethyl O-carbamate 15 with
phenylboronic acid. PCy; was used as ligand in the calculations. For clarity, the cyclohexyl groups on the ligand are not shown.

AGq
(keal/mol) y

Ni(PCy3)z

Figure 3. Gibbs free energy profile of the Ni-catalyzed Suzuki—Miyaura cross-coupling reaction of N,N-dimethyl phenyl O-sulfamate with
phenylboronic acid. PCy; was used as ligand in the calculations. For clarity, the cyclohexyl groups on the ligand are not shown.

to the Ni(PCys), complex, which is 3.1 kcal/mol lower than that
of the oxidative addition of N,N-dimethyl phenyl carbamate 15.
The higher reactivity of the sulfamate in oxidative addition is due
to the weaker Ph—O bond in sulfamate than the corresponding
Ph—O bond in the carbamate group. Nonetheless, the oxidative
addition with aryl carbamates or aryl sulfamates are both
predicted to be very facile. The differences of their reactivities

are attributed to the different activation barriers in the rate-
determining transmetalation step. After the oxidative addition of
the carbamate, a stable phenyl Ni(II)-carbamate complex 18 is
formed. Subsequent ligand exchange with phenyl boronate
requires 5.5 kcal/mol energy to form the Ni(II)-boronate com-
plex 20. In contrast, since sulfamate is a better leaving group, the
Ni(II)-boronate complex 20 is formed spontaneously from the
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Figure 4. Transition-state structures of Ni-catalyzed oxidative additions of (a) N,N-dimethyl phenyl O-carbamate and (b) N,N-dimethyl phenyl O-
sulfamate. PCy; was used as ligand in the calculations. For clarity, the cyclohexyl groups on the ligand are not shown.

NiCI(PCy,), (5 mol%})

ME_O_OSOZNMez + (HO»E—@—X i
KePO4

hexamethylbenzene

toluene, 80 °C

34 1a, X = OMe 35a-c

Relative Rate of Conversion
1a>2a>4a

Figure S. Qualitative relative rates of cross-coupling depending on
boronic acid.

Ni(II)-sulfamate complex 28. The activation barrier of the rate-
determining transmetalatlon step for the cross-coupling with the
sulfamate (AG* = 24.7 keal/ mol) is much lower than that for the
corresponding carbamate (AG = 30.2 kcal/mol). The subse-
quent steps after transmetalation are identical for the coupling
reactions for carbamates and sulfamates.

To support the computational finding that transmetalation is
the rate-determining step in the cross-coupling reactions de-
scribed above, a series of experiments were carried out. Sulfamate
34 was independently subjected to reactions with boronic acids
1a, 2a, and 4a in the presence of NiCl,(PCy;), and K3PO, in
toluene at 80 °C (Figure S). In each case, reaction progress was
monitored by "H NMR analysis using hexamethylbenzene as
internal standard. The relative rate of cross-coupling was found
to be dependent on the individual boronic acid employed, with a
direct correlation between electron-richness of the boronic acid
and reaction rate (i.e., relative rate of conversion: 1a > 2a > 4a). s
These findings are consistent with a rate-determing transmetala-
tion step for the sulfamate cross-coupling process.*®

Similar to the rep01ts by Shi in related Ni-catalyzed Suzuki—
Miyaura cross- coup]mgs, we have observed that water can play a
critical role in the success or failure of a coupling reaction (vide supra).
To better understand these experimental findings, we examined the

role of water computationally. In the coupling with phenyl carbamate,
water can coordinate with Ni and stabilize the catalyst resting state, the
Ni-carbamate complex 18. A six-membered cyclic Ni(II)-water-
carbamate complex 19 is formed and is 1.1 kcal/mol more stable
than 18 (Figure 2).*” Coordination with water increases the barrier of
transmetalation to 31.3 kcal/mol (19 — TS21), and thus decreases
the reactivity of the coupling for the carbamate. In the coupling with
phenyl sulfamate, the catalyst resting state is the Ni(Il)-boronate
complex 20. Upon coordination with a water molecule, a similar six-
membered cyclic complex 29 is formed in equilibrium. However, 29 is
7.7 kcal/mol less stable than 20. This suggests that coordination with
water does not affect the barrier of transmetalation in the coupling
reaction of the sulfamate. This agrees with the experimental observa-
tion that Suzuki—Miyaura cross-couplings of aryl sulfamates are less
sensitive to water than couplings of aryl carbamates.

In contrast to the high reactivity of the Ni catalyst in oxidative
addition with carbamates and sulfamates, Pd catalysts are much less
reactive in the oxidative addition step. Oxidative addition of phenyl
N,N-dimethylcarbamate with Pd also prefers a five-membered
monoligated transition state. The activation barrier is 42.2 kcal/
mol with respect to the Pd(PCy;), complex, much higher than that
of the corresponding Ni catalyst. Similarly, oxidative addition of
phenyl N,N-dimethylsulfamate also requires a very high activation
barrier of 39.7 kcal/mol. These observations are in agreement with
previous mechanistic and theoretical studies that the oxidative
addition step to Ni(0) is more facile than that to Pd(0).*>*
Therefore, due to the extremely high activation barriers for oxidative
addition, Pd catalysts are not effective in couplings with carbamates
and sulfamates.

Synthetic Applications. The scope and limitations of our
sulfamate and carbamate coupling methodologies were further

6359 dx.doi.org/10.1021/ja200398c¢ |J. Am. Chem. Soc. 2011, 133, 6352-6363



Journal of the American Chemical Society

Scheme 4

Et;NOCO  H

I &-BuLI THF, -78°C
OCONEL,
§j— II 3-methylbut-2-enal 8%.,
fl. ACOH
36 (54% yield)

PhB(OR); (2.5 equiv)
NICI{PCy,); (5 mol%) 0
PCy3HBF, (10 mol%) Q O
KaPO, (5 oqul\rj
o-xylene, 1
(56% yield)
Scheme §
41
M POy . cunaapiis: CONEt, nm
P THF, T8 °C oy — ™
—_— Pl
ii. B(OMe);; H,0 mm‘?ﬁkux
39 (B8% yield) 40 (79% yield)
MeO  OCONEY, PhB(OR); (2.5 equiv) MeO  Ph

NiCl{PCys); (5 mol®)
o PCyyHBF, (10 mol®) o
K3PO, (5 equiv)

"
a2 o-xylene, 150 °C 43
(21% yield)

examined by way of a variety of synthetic applications. In each of
the studies undertaken, the synthetically useful capability of
carbamates and sulfamates to function as directed metalation
groups (DMGs) and Suzuki—Miyaura coupling partners was
exploited. These studies showcase the utility of our methodology
in the synthesis of polysubstituted aromatic compounds, with
relevance to natural product and bioactive molecule synthesis.

Scheme 4 depicts a concise synthesis of S-phenyl-2H-chro-
mene 38 beginning from bis(carbamate) precursor 36. Thus, in a
one-pot procedure involving sequential treatment with ¢-BuLi,
3-methylbut-2-enal, and AcOH, compound 36 was converted
into 2H-chromene carbamate 37.***° Subsequent Suzuki—
Miyaura cross-coupling provided biaryl 38 in 56% yield. Biaryl
38 possesses a heterocyclic framework of bioactivity™® and natural
product interest.>!

In another application, the unique heterotriaryl 43 was con-
structed using carbamate DoM and cross-coupling methodology
(Scheme $S). 0-Methoxy carbamate 39 was first transformed into
boronic acid 40 in 88% yield using a standard lithiation/borylation
protocol. Subsequent Pd-catalyzed Suzuki—Miyaura cross-coupling
with iodobenzofuran 41 delivered arylated product 42 without
disturbance of the aryl carbamate under these conditions.*” The
subsequent Ni-catalyzed carbamate cross-coupling with phenyl-
boronic acid provided the targeted heterotriaryl 43.

An illustration of the DoM/cross-coupling protocol beginning
from a heteroaryl carbamate is presented in Scheme 6. Lithiation/
borylation of 44 afforded the boropinacolate 45, which was
subjected to standard Suzuki—Miyaura cross-coupling conditions
with bromide 46 using Pd catalysis to furnish heterobiaryl 47.>*
Heteroaryl carbamate 47 was found to be an excellent substrate for
the Ni-catalyzed cross-coupling using our standard conditions, to
afford the heterotriaryl product 48 in 91% yield. Compound 48
represents a class of pyridines with nonidentical diaryl substitution
for which only two synthetic methods are available.*®

Scheme 6

o g
N{ by H -

oue, )
i 46
N B‘ —_—-
o = [} Pd{PPh;),
Na,CO;
toluene,

jii. pinacol

44 45
(62% yield, from 44)

;W"E" PhB(OR}; (2.5 equiv)
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= PCy;HBF, (10 mol%) N OMe
K3PO, (5 equiv) =
o-xylene, 150 °C
47 48
(91% yield)

Scheme 7
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As an application to bloactlve molecule synthesis, the anti-
inflammatory drug flurbiprofen®® was prepared using sulfamate
methodology (Scheme 7). Boronic acid 49, derived from o-lithia-
tion/borylation of N,N-dimethyl phenyl sulfamate, was fluorinated
using the conditions described by Furuya and Ritter”’ to provide
fluorosulfamate 50. Alternative routes to generate 50 by direct
lithiation/fluorination of N,N-dimethyl phenyl sulfamate were un-
successful despite numerous attempts.*® Nonetheless, para-selective
electrophilic iodination of 50 furnished 51 in 64% yield. With the
aryl sulfamate being inert to Pd catalysis, we carried out a site-
selective enolate coupling to install the necessary propionate side
chain. Whereas enolate coupling of a?fl iodide 51 under Buchwald’s
Pd-based conditions was feasible,’ hlgher yields of 52 were
obtained using a Ni-catalyzed variant.* With the sulfamate remain-
ing undisturbed, exposure of 52 to our Ni-catalyzed conditions
facilitated the key sulfamate cross-coupling and delivered the biaryl
53. Acid-mediated hydrolysis furnished flurbiprofen (54) in 84%
yield over the two steps. It should be emphasized that the aryl
fluoride of 52 was chemlcally inert under our Ni-catalyzed cross-
coupling conditions."

We have observed that aryl carbamates amd sulfamates are
unreactlve toward Pd(0) catalysis (vide supra) and related
processes.”” This feature allows the sequential cross-coupling of an
aryl halide, followed by either an aryl sulfamate or carbamate
coupling process (see Scheme 7). To further probe related issues
of orthogonality, we questioned if it would be possible to couple aryl
sulfamates in the presence of aryl carbamates. Although aryl
sulfamates generally provide higher yields of cross-coupled products
compared to aryl carbamates, the relative reactivity of these
substrates had not been determined previously. As shown in
Figure 6, an equimolar mixture of phenyl carbamate 55 and phenyl
sulfamate 6 was treated with an excess of boronic acid 3a under
Ni-catalyzed cross-coupling conditions. Although significant selec-
tivity was observed at elevated temperatures, complete selectivity for
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Figure 6. Intermolecular competition experiments of aryl sulfamates
and aryl carbamates.

sulfamate coupling was readily achieved at 50 °C, as determined by
"H NMR analysis with hexamethylbenzene as internal standard.”
The selectivity for sulfamate coupling is attributed to the lower
oxidative addition barrier than that in the corresponding step for
carbamates (see above computational studies). Analogous experi-
ments were conducted on the naphthyl-based substrates, carbamate
56 and sulfamate 57, and a high selectivity for naphthyl sulfamate
over carbamate cross-coupling was observed at 40 °C.*> We expect
that these observations will be of synthetic value.

Il CONCLUSION

In summary, we have discovered the first Suzuki—Miyaura cross-
coupling reactions of the synthetically versatile aryl O-carbamate and
O-sulfamate groups. The transformations utilize the inexpensive,
bench-stable catalyst NiCL,(PCy;), to deliver biaryls in good to
excellent yields. The methodology is tolerant of substrates bearing
electron-donating and electron-withdrawing groups, in addition to
those that possess ortho substitutents and heterocyclic frameworks.
Furthermore, a computational study has revealed the full catalytic
cycles for these cross-coupling reactions, thus shedding light on
various mechanistic details, rationalizing sulfamate over carbamate
higher reactivity, and indicating the role of water in the transition
state. As demonstrated by the given synthetic applications, the
methodology provides an efficient means to access polysubstituted
aromatic compounds, with relevance to both natural product and
bioactive molecule synthesis. The orthogonal use of the sulfamate or
carbamate reactivities, in combination with directed ortho metala-
tion and other aryl O-based cross-coupling reactions in arene and
heteroarene synthesis, may be anticipated.
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